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ABSTRACT
We present a transport protocol whose goal is to reduce power
consumption without compromising delivery requirements
of applications. To meet its goal of energy efficiency, our
transport protocol (1) contains mechanisms to balance end-
to-end vs. local retransmissions; (2) minimizes acknowledg-
ment traffic using receiver regulated rate-based flow control
combined with selected acknowledgements and in-network
caching of packets; and (3) aggressively seeks to avoid any
congestion-based packet loss. Within a recently developed
ultra low-power multi-hop wireless network system, exten-
sive simulations and experimental results demonstrate that
our transport protocol meets its goal of preserving the en-
ergy efficiency of the underlying network.

1. INTRODUCTION
Motivation: Multi-hop wireless networks are plagued
with unique challenges: contention for the wireless medium,
time-varying topology due to the variable quality of
links or mobility, and power constraints imposed by
battery lifetimes. The focus of this paper is the last
challenge: power constraints. We seek to minimize the
usage of energy so as to extend the lifetime of both indi-
vidual nodes and the network as a whole, while meeting
the requirements of applications.
While energy efficiency has been recognized as a chal-

lenge for some time [37], until recently, very little progress
has been made. In the past couple of years we have be-
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gun to see efforts to reduce the energy consumed in the
radio circuit, which draws most of the battery power.
Low power [36], adjustable power [40], as well as

two-stage receiver radios [30] have been designed and
implemented in an effort to minimize the energy con-
sumption while transmitting and receiving packets. In
order to minimize the energy spent on “idle” listening
of the channel, new MAC protocols have been proposed
that implement coordinated wake-up schedules that al-
low nodes to be turned off for long periods of time. Also
in an effort to minimize network control (e.g. routing)
traffic, controlled scoping of topology information [29]
has been proposed.
As an example, the JAVeLEN system [11,26] achieves

dramatic results demonstrating networks that consume
100 times less energy for the same effective network
goodput, compared to a typical 802.11 multi-hop wire-
less network running the OLSR routing protocol.
These type of highly energy-efficient systems present

a challenge to network protocol designers. All high-
layer protocols need to be examined and, if necessary,
redesigned to make sure they are conservative in their
transmissions. A parsimonious media-access protocol is
of limited benefit if applications choose to be chatty and
consume power with low-value transmissions.
In this paper we examine the problem of designing

a transport protocol that is energy conserving and is
suitable for deployment over energy-conscious systems.
Extensive studies (reviewed in Section 7) have demon-
strated the inadequacy of TCP to serve as a trans-
port protocol in wireless environments. Later attempts
to enhance or redesign TCP for wireless scenarios are
mainly focused on improving performance metrics such
as goodput and delay, but not on minimizing energy
consumption.
Designing an energy-conscious transport protocol is

simultaneously simple and hard. The problem is sim-
ple because, for practical purposes, we can use a simple
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metric to minimize: the total number of node transmis-
sions for each packet, or each conversation.1 The prob-
lem is hard because very little is known about minimiz-
ing transmissions across multiple nodes. There is plenty
of research work on minimizing transmissions end-to-
end, especially limiting the number of acknowledgments
sent, but almost nothing on intermediate transmissions.
And the one key piece of work in the area, Ludwig’s
work on the interaction of end-to-end and hop-by-hop
retransmissions [22], gives a depressing result: namely
in a world where one needs both end-to-end and hop-
by-hop retransmissions, it is very easy to have the two
transmission mechanisms interact to cause more, rather
than less, total transmissions. Our transport protocol
coordinates end-to-end and hop-by-hop retransmissions
by allowing the ends of the connection to explicitly con-
trol the amount of local retransmission effort, based
on application’s reliability requirement. JTP’s objec-
tive of minimizing the number of total transmissions is
not only beneficial in energy-constrained networks, but
in any wireless network since limiting the overall num-
ber of link-layer transmissions effectively increases the
network-wide capacity.
Our Contribution: Our transport protocol mediates
between an application’s need to share information of
varying importance over the network, and the system’s
goal of minimizing energy expenditure per successfully
delivered bit. Given that JAVeLEN is the state of the
art in energy conserving network systems, our protocol
uses JAVeLEN as the underlying architecture and thus
we will refer to it as JTP (JAVeLEN Transport Pro-
tocol). Although JTP is implemented to work within
JAVeLEN, it is designed to operate within any wireless
(or wireline) architecture that provides an interface for
JTP to both, control the number of node retransmis-
sions made by the media-access protocol, and get at
least indication of the available capacity of the channel,
and of the packet loss rate. JTP’s architecture strives
to maximize the modularity of the system. Information
is propagated through packet headers and all the neces-
sary hop-by-hop operations are performed by a separate
module that is used by the MAC.
In this paper, we present a summary of our design

and the novel features of JTP as follows:

• To the best of our knowledge, JTP is the first
multi-hop wireless end-to-end transport protocol
designed to perform hop-by-hop soft-state oper-
ations to improve (goodput and energy) perfor-
mance while preserving the end-to-end principle
[28] (Section 2).
JTP employs mechanisms akin to the Dynamic
Packet State [33]—using packet headers to prop-

1This metric admittedly ignores energy costs for computa-
tion and memory in the nodes. The usual logic for ignoring
these costs is that the radio consumes far more energy.

agate information—to avoid maintaining per-flow
state and maintain the modularity of the system.

• JTP exploits any energy-gain opportunities pro-
vided by the applications. Historically, transport
protocols have offered a particular reliability/QoS
model and the application’s task was to pick the
transport protocol whose model most closely met
the application’s needs (e.g. UDP, TCP, ITP [25],
RTP [13]). JTP is designed to act as a “generic”
transport protocol tailored by the application based
on its specific QoS semantics. JTP uses the tol-
erance of the application to losses and limits the
network’s effort in trying to deliver a packet, based
on the packet’s individual importance as well as
current energy costs (Section 3).

• In JTP, the receiver is fully responsible for con-
trolling all transmission parameters; connection’s
sending rate, retransmission requests for missing/lost
packets, as well as the frequency of such controls.
To the best of our knowledge, JTP is the first
transport protocol that supports variable destination-
controlled feedback trying to keep feedback as low
as the stability and reliability of the network per-
mits (Section 5).

• JTP implements a caching mechanism which en-
ables intermediate nodes along the path of a JTP
connection to temporarily store traversing pack-
ets.2 This enables the recovery of lost packets as
close to the receiver as possible. These pipelines
of caches along paths generalize the single-level
caching often employed in cellular-type (single wire-
less hop) networks [5]. Although a system that
supports symmetric routes between hosts, like the
JAVeLEN system, would exploit caching benefits
to its fullest, the opportunistic design of the caching
system would seize any chance for locally recover-
ing lost packets, without interfering with the end-
to-end semantics of each connection.

To allocate bandwidth fairly among flows in the
presence of in-network caching and retransmissions,
a JTP sender backs off its sending rate to ac-
count for “internal” retransmissions triggered from
caches on its behalf (Section 4).

• JTP also employs a (congestion-avoidance) rate-
based flow control—using ATM-like explicit rate

2We note that efficiency achieved by caching and repairing
errors earlier using such in-network caching does not con-
tradict the end-to-end argument of system design [28]—the
source does not delete its copy of a packet until it gets an
acknowledgment from the final destination that it has suc-
cessfully received the packet. Furthermore, the soft-state
nature of caches provides resilience to route changes.

2



feedback from the network—in an attempt to elim-
inate energy wastage associated with congestion-
induced packet drops.

• JTP is implemented as “shared code” that can be
run either in simulation or on real radio nodes.
Results from simulation and from a prototype of
JAVeLEN radios (Section 6) confirm the premise
of JTP in reducing the energy consumed per de-
livered bit.

2. JTP DESIGN
As we sought to design a protocol that minimizes the

total number of node transmissions required to deliver
application data, we chose to decompose that goal into
three subgoals:
(1) Minimize end-to-end retransmissions. Ludwig’s work
showed that we needed to strike a balance between end-
to-end (source) and local retransmissions. End-to-end
retransmissions effectively waste all the energy already
expended on getting the packet at least part way to the
destination by the initial transmission. So, while occa-
sional retransmissions from the source are required (e.g.
due to intermediate node failure or topology changes),
we sought to do everything we could to retransmit a
lost packet from the farthest downstream, intermediate
node along the packet’s path which had received the
packet successfully.
(2) Minimize acknowledgments. Acknowledgments are,
often, pure overhead—they carry no application data.
Yet, they consume roughly as much energy as a data
transmission. So, consistent with reliability and other
goals, we would like to minimize acknowledgments.
(3) Avoid congestion loss in the nodes. By design, a
classic TCP-like congestion control induces packet drops,
since loss is the only sign of congestion. The energy ex-
pended by packets that are discarded, simply to signal
congestion, is wasted. In a world where energy is the
key metric, congestion control should consume less en-
ergy than what discarding a packet implies. Assuming
that JTP is effective in only transmitting data when
necessary, JTP aims to avoid congestion instead of con-
trolling it.
The result of these goals was the JTP architecture

shown in Figure 1. JTP uses rate-based transmission
controlled by the destination. Intermediate wireless
nodes report on their condition in data packet headers.
A Path Monitor and Path Controller at the destina-
tion collect this path performance data and adjust data
rates to avoid congestion. Intermediate nodes retrans-
mit packets on a per hop basis, cache packets, and ex-
amine end-to-end acknowledgments. If an acknowledg-
ment indicates a packet was lost further along the path,
the node will retransmit this packet, thereby avoiding
an end-to-end retransmission (a la the work of Balakr-
ishnan et al. [5]). Based on this design, we next look at

how JTP actually works.
Before we delve into the details of JTP, we provide

a brief description of the JAVeLEN system. JAVeLEN
deploys a TDMAMAC which orchestrates nodes’ trans-
missions by using pseudo-random schedules, providing
collision-free access to the channel and allowing nodes
to turn off their radios when they are not in use. Each
node also keeps statistics about link transmissions and
idle slots in order to provide estimates of the available
transmission rate and of the packet loss rate on every
link. JAVeLEN uses an energy conserving link-state
routing algorithm [29], that provides each node with a
local, possibly inaccurate, view of the network’s topol-
ogy.

1: Source of 

JTP Connection

3: Destination 

of JTP Connection

Wireless Network

5: Header
(controlled transmission

 parameters:

rate, energy, SNACK)

4: JTP packet

  6: Path Monitor

8: Transmitter
depends on 5 and 7

 7: Path controller

2: Intermediate Nodes

9: Mid-path operations
(caching, deflection,

error recovery, scheduling)

Figure 1: Elements of JTP

2.1 A Packet-based View of JTP
We begin by describing JTP in terms of packets—

data and acknowledgment packets—and how they flow
between source and destination. Figure 2 shows the
packet format for JTP packets. While the JTP header,
shown in Figure 2(a), is attached to all packets, the
ACK header, shown in Figure 2(b), is optional and is in-
cluded only in packets that carry feedback information.
Note that this is an optimized version of JTP head-
ers that only carry the necessary information. In our
prototype implementation the JTP headers are slightly
longer, mainly for debugging purposes.

2.1.1 Data Packets
Data packets travel from the source to the destination

of a JTP connection. In JTP, data packets contain three
novel fields: available rate, loss tolerance, and energy
budget.
• Available rate: The available rate of a link, from a
node to its neighbor, represents its current available
transmission capacity—in a TDMAMAC, like the JAVe-
LEN MAC, that available rate is determined by the
current rate of unused (idle) time slots during which
the neighbor is awake for reception; in CSMA/CA net-
works, a method similar to [20] can be used to estimate
the available bandwidth. At each node visited, a packet
is stamped with the minimum available rate collected so
far along the path of the JTP connection As described
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Figure 2: JTP packet format

in Section 5, this available rate is used by the flow con-
troller at the destination to update the sending rate of
the source. Note that due to retransmissions that may
be required to get the packet to the next hop, a packet
may consume more than one MAC-level transmission
slot. So the available rate value must be normalized by
the average number of MAC-level transmissions. Lud-
wig [22] pointed out that allowing multiple MAC-level
transmissions can increase packet delay and also reduce
the effective bandwidth that an application perceives.
As we will see later, by allowing applications to control
the number of MAC-level transmissions per link, JTP
effectively gives applications control over the delay and
effective bandwidth on every link.
• Loss tolerance: A source node encodes the desired
end-to-end loss tolerance in packet headers. Each node
along the path pre-computes the maximum number of
transmission attempts to the next hop, given the re-
maining length of the path (known from the node’s view
of the topology) and packet’s loss tolerance. The packet
is dropped if this pre-determined maximum number of
local attempts is exceeded. As described in Section 3,
before forwarding the packet, the node updates the loss
tolerance field so any left-over attempts (from the pre-
determined maximum number) do not get used down-
stream, thus reducing the variability in energy con-
sumption across nodes along the path.
• Energy budget: The source initially assigns each packet
an energy budget value based on the energy the net-
work would typically expend to deliver the packet suc-
cessfully. A packet is dropped whenever the energy

used exceeds the energy budget of the packet. This
approach provides an energy-conscious mechanism for
dealing with routing loops (as opposed to the traditional
hop-count TTL) and, as we elaborate later, in conjunc-
tion with the loss tolerance field, creates a sturdy way
to manage the energy expenditure per packet.
The available rate field addresses the goal of avoiding

congestion loss. Because JAVeLEN provides a practi-
cally collision-free MAC layer, if the JTP flow controller
ensures that it does not drive the available rate to zero,
congestion-induced losses are avoided.3

The energy budget and loss tolerance fields manage
the expenditure of energy per packet. By limiting the
effort of each node to successfully deliver a packet, the
loss tolerance field bounds the total transmission energy
spent by each node. The energy budget on the other
hand, sets an upper bound on the energy that the whole
network might expend to deliver a packet to the desti-
nation. The deadline field is used by real-time traffic,
and although this is out of the scope of this paper. it is
included for completeness.

2.1.2 Acknowledgment Packets
JTP ACK packets carry data acknowledgments, as

well as transmission rate and energy budget informa-
tion from the receiver to the sender. The rate at which
ACKs are fed back to the sender is regulated by the re-
ceiver, based on the stability conditions of the path. For
a stable path, a minimum feedback rate is determined
by the application based on its requirements—for exam-
ple, an application with a more stringent delay require-
ment would require a higher feedback rate to achieve
a more timely recovery of missing data. A lower feed-
back rate, if tolerated by the application, allows JTP
to aggregate ACK information in a single packet, thus
reducing feedback load.
It is well known that rate-based flow control is vulner-

able to the loss of feedback messages. As we elaborate
in Section 5, JTP overcomes this problem by having the
receiver inform the sender of its feedback rate. So if the
sender does not get an ACK within the expected feed-
back delay, it backs off its transmission rate. Further-
more, short-term, and significant, variations in path’s
conditions (available rate or energy used) would be de-
tected by the path monitoring function at the receiver,
thus triggering an early feedback.
In addition to reporting rate and energy information,

an ACK packet carries both positive cumulative and
negative selective acknowledgments. Each intermediate
node on the path examines the SNACKs and retrans-

3Even if the underlying MAC does not provide collision-free
access, JTP’s operation will not be affected, since collisions
would only increase the link loss experienced by packets,
thus increasing the number of link-layer retransmissions per
packet and effectively reducing the measured available band-
width, which in turn forces the sources to back off.
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mits missing packets if these packets are in the interme-
diate node’s cache—if they are, the node appropriately
modifies the ACK packet so the sender is explicitly in-
formed of such in-network retransmissions done on its
behalf (cf. Section 4). Caching, and acknowledgments,
are discussed in more detail in Section 4.

2.2 JTP Components
As mentioned earlier in Section 1, although JTP is

an end-to-end transport protocol, it also performs hop-
by-hop operations to improve its performance. In order
to alleviate the overhead of the hop-by-hop operations
and increase the protocol’s efficiency, JTP is divided
into two main components: the end-to-end JTP (eJTP)
and the hop-by-hop (or, intermediate) JTP (iJTP).

2.2.1 End-to-end JTP
The functionalities of eJTP are further categorized

into application-specific and network-specific modules.
This modularity makes JTP a more versatile transport
protocol. In this work, we focus on bulk data transfers
over multi-hop wireless networks.
• The application-specific module of eJTP is responsible
for fragmentation and reassembly of application’s data.
Moreover, it expresses the QoS requirements (e.g. relia-
bility level) to the network-specific module to influence
in-network packet handling decisions, flow control, and
retransmission requests only for those missing packets
that are important to the application.
• The network-specific module manages all JTP connec-
tions and implements the path monitor and the (congestion-
avoidance rate-based) controller of per-packet transmis-
sion parameters.

2.2.2 Hop-by-hop JTP
iJTP performs all the mid-path (intermediate) cache-

related and soft-state operations. It manages the local
cache of every node by ensuring that only valuable data
packets are stored, data packets indicated in SNACKs
are retransmitted, and cached data packets are evicted
based on the selected caching policy.
Soft-state per-packet operations performed by iJTP

at each node, include:
• Update the available rate field: iJTP is responsible for
acquiring from the MAC layer an estimate of the avail-
able rate to every neighbor, as well as an estimate of the
packet loss rate on that link. It uses this information
to estimate the effective available rate to each neighbor.
iJTP stamps each passing packet with the lowest effec-
tive available rate (throughput) observed thus far along
the path.
• Update the loss tolerance field: Based on the loss tol-
erance carried in the packet’s header and the link’s es-
timated packet loss rate, iJTP sets the number of data
transmission attempts on that link, as we elaborate in
Section 3. The loss tolerance field is then updated to

Algorithm 1 P reXmit()
1: increaseEnergyUsed(packet);
2: if (packet.energyUsed > packet.energyBudget)
then

3: dropP acket(packet);
4: else
5: if firstDataT ransmission(packet) then
6: lossRate = getLinkLossRate(packet);
7: setMaxDataT ransmissions(packet, lossRate);
8: updateLossT olerance(packet);
9: end if

10: rate = getAvailableRate(packet);
11: packet.rate =
12: MIN(packet.rate, rate/AvLinkLayerAttempts);
13: end if

Algorithm 2 P ostRcv()
1: if (packet.type == DAT A) then
2: cacheP acket(packet);
3: else if (packet.type == ACK) then
4: retransmitP ackets(packet.SNACK)
5: updateACK(packet);
6: end if

reflect its value for the remainder of the path.
Besides the fact that iJTP must process all JTP pack-

ets that pass through a node, the above described soft-
state operations require the crafting of cross-layer inter-
actions with the MAC layer. In order not to compro-
mise the performance of a node, by redundant copying,
context switching, and message passing between JTP
and the MAC layer, we implemented iJTP as a separate
loadable plug-in module of the MAC protocol. iJTP is
invoked whenever a packet is received or about to be
transmitted over the air interface.4

Algorithms 1 and 2 present in pseudo-code the op-
erations of iJTP, which is invoked exactly before the
transmission (Algorithm 1) and exactly after the recep-
tion (Algorithm 2) of a packet from the physical layer.
.

3. ADJUSTABLE RELIABILITY FOR EN-
ERGY CONSERVATION

Not all applications (e.g. voice, video, images [25])
require full reliability to perform well. Given reliability
targets from applications (provided by the application
module), and knowledge of packet loss rates (provided
by the MAC layer 5), JTP adjusts the effort it puts into

4Although within the JAVeLEN system, iJTP resides in the
MAC, iJTP operations can be performed by eJTP using an
overlay type of architecture.
5The MAC layer keeps statistics about successful packet
transmissions and estimates the average packet loss rate ex-
perienced over each link.
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delivering each packet, seeking to expend only enough
energy to deliver “needed” packets. Specifically, iJTP
controls the number of node transmission attempts on
a per packet basis. In JTP, the reliability level is ex-
pressed in terms of the loss tolerance percentage (e.g.
10% of packets can be lost) encoded in the header of
each packet.
Let le2e be the end-to-end loss tolerance requested by

the application. Let ni, i ∈ [0, H ] be the nodes on the
path from the source n0 to the destination nH , where
H is the total number of links on the path. Let qi, i ∈
[0, H − 1] denote the probability that a packet sent by
node ni will be successfully delivered to the next node
ni+1. In order to satisfy the end-to-end loss tolerance
of the application, the following equation should hold:

le2e = 1−ΠH−1
i=0 qi (1)

The value of qi changes depending on the number of
node transmission attempts indicated to the MAC by
iJTP. Let pi denote the probability that a single node
transmission from ni to ni+1 fails, and letMi denote the
total number of node transmission attempts requested
for a packet on link (ni, ni+1). Then qi = 1−pMi

i , from
which we can compute Mi as:6

Mi = max(1,min(� log(1− qi)
log(pi)

�, MAX AT T EMP T S))

(2)
where MAX AT T EMP T S is the maximum number of
link transmissions that the MAC allows. The challenge
is to dynamically adjust the values ofMi for each packet
in a flow so as to satisfy the desired le2e.
If the length of the path to the destination is known,

the values for qi’s can be directly computed from equa-
tion (1), and encoded in the headers of packets. How-
ever, in a network setting where the topological views
at the nodes are typically not accurate, the path length
is estimated based on a node’s current view. Therefore,
JTP carries out the computation of qi’s at each node,
as the packet travels toward the destination, thus using
increasingly more accurate views.
Let lti be the loss tolerance that is encoded in the

packet when received by node ni. Let Hi be the number
of links from ni to the destination. Before the node
transmits the packet to its next-hop, it updates the loss
tolerance field as follows:

Πi+Hi−1
j=i qj = 1− lti ⇒ qiΠi+Hi−1

j=i+1 qj = 1− lti ⇒ (3)

lt(i+1) = 1− 1− lti
qi

Although there are many different strategies that might
be employed to compute qi on each link—e.g. impos-
ing higher successful delivery requirement on less loaded
6The success probability is equal to

PMi−1
k=0 pk

i (1 − pi) =

(1− pMi
i ).

links or on nodes with higher available energy—in this
paper we assume that JTP attempts to assign the same
qi = q for all the links. From Equation (1) we get:

q = (1− lti)
1

Hi (4)

By dynamically adjusting the hop-by-hop success prob-
ability experienced by each packet, the end-to-end re-
liability requirements are met even if the topological
views at different nodes are inconsistent, or the path
changes. Moreover, by assigning a loss tolerance target
to each individual packet, JTP enables the application
to prioritize its packets (e.g. video frames of varying
importance).
We tested JTP under different reliability levels. Three

different levels are considered 0% (jtp0), 10% (jtp10)
and 20% (jtp20).
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Figure 3: Different reliability levels: jtp0, jtp10,
jtp20 have loss tolerance of 0%, 10% and 20%, re-
spectively.

Figures 3(a) and (b) demonstrate that by neither
overachieving (e.g. TCP-like full reliability for all), nor
underachieving (e.g. UDP-like no reliability for all), JTP
manages to save energy and still satisfies an applica-
tion’s requirements, denoted by the horizontal dotted
lines in Figure 3(b).7 (See Section 6 for simulation de-
tails.) Figure 3(c) shows the maximum number of node
retransmissions set by iJTP for each packet at the third
node along a 4-node path. Packets that request higher
reliability are retransmitted more times by the link layer
in cases when the link quality is not good enough, and
thus JTP directly affects the amount of network’s effort
in delivering each packet.8

4. CACHING
JTP employs in-network caching of data packets to

avoid end-to-end (source) retransmissions as much as
7The jtp20 plot is always above the application’s require-
ment since the aggregate loss rate of the path is below 20%.
8The flow that corresponds to 0% loss tolerance is omitted
from this plot since iJTP will always assign its packets the
maximum number of node attempts.
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possible. Caching can be viewed as a second line of de-
fense if all MAC-level attempts fail; for example, due to
a temporary excessive degradation in link quality. The
destination may request any of these cached packets
that it is missing, and are still needed by the applica-
tion.
Upon receiving a traversing ACK packet, a node checks

the Selective Negative ACK (SNACK) field to deter-
mine whether any packet(s) requested for retransmis-
sion exists in the node’s local cache. Requested packets
found in the cache are forwarded downstream toward
the destination.
Besides the SNACK field, an ACK packet header also

contains a locally-recovered packets field, used to indi-
cate which of the packets requested for retransmission
have been already locally retransmitted by some node.
Upstream nodes check this field to avoid multiple re-
transmissions of the same packets. When the source
of the transfer receives an ACK, it will only retransmit
packets that remain in the SNACK field.
If the cache of a node becomes full, to insert a newly

arriving packet, the packet evicted from the cache is
the least recently manipulated, i.e. Least Recently Used
(LRU) policy. The motivation is that it is unlikely that
those packets not recently requested for retransmission
would be ever requested in the future. A detailed study
of different cache replacement strategies is the subject
of future work.

4.1 Analysis of In-network Caching Gain
In this subsection, we provide an analytic assessment

of the benefits of caching.
• JTP with caching: In order to compute an upper
bound on the gains achieved by caching, we assume
a best-case scenario whereby cache sizes are infinite,
and the path is symmetric, thus each lost packet will
be recovered by the last downstream node which has
successfully received it.
We compute the expected total number of node trans-

missions, denoted by E[T JTP
tot ]. In the presence of in-

network caching, each packet will effectively be retrans-
mitted over each link for as many times as needed, until
it is successfully delivered to the next node. If p is the
link loss probability, the expected number of node trans-
missions on a link l follows a geometric distribution with
mean E[T JTP

l ] = 1
1−p .

The expected total number of node transmissions re-
quired by JTP in order to deliver k packets overH hops
is given by:

E[T JTP
tot ] = k × H × 1

1− p
(5)

• JTP without caching: In the case of JTP with no
in-network caching (henceforth denoted by JNC), over
each link, the packet is transmitted, say, at most n
times. If its transmission still fails, then it must be
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Figure 4: Comparison of JTP against JTP with
No Caching (JNC) in static linear topologies.

retransmitted from the source.
Denote by S > k, the random variable representing

the total number of packets sent by the source until
k packets are successfully delivered at the destination,
then E[S] = k

qe2e
, where qe2e is the end-to-end success

probability.
When a packet is received at a node, the average

number of node transmissions that it triggers is:

E[T JNC
l ] = (1− p) + 2(1− p)p+ · · ·+ n(1− p)pn−1 + npn

=
1− pn

1− p

Given that the link success probability is q = (1−pn),
the probability that a packet makes it over i links is qi,9

which then triggersE[T JNC
l ] node transmissions. Thus,

the total number of node transmissions for JNC is given
by:

E[T JNC
tot ] =

H−1∑

i=0

E[S]× qi × E[T JNC
l ]

=
k(1− pn)(1− (1− pn)H)
(1 − pn)H(1− p)pn

≈ k × H

(1− pn)H−1(1− p)
(6)

For H = 1, equation (6) degenerates to (5). Observe
that the cost of JNC is 1

(1−pn)H−1 times higher than
that of JTP.
To confirm the energy gains of caching, we compare

by simulation JTP and JNC in Figure 4. (See Section 6
for experimental details.) Figure 4(a) shows the energy
expenditure per successfully delivered application bit.
As expected, as the path between the source and the
destination increases, the energy gains achieved by em-
ploying in-network caching also increase. Figure 4(b)
shows the per-node energy consumption in a linear 7-
node topology. Observe that JTP not only expends
less total energy, as expected, but also distributes more
fairly the energy expenditure among nodes in the path.

4.2 Fair In-network Caching

9qe2e = (1− pn)H .
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Figure 5: Short-term (top row) and long-term
(bottom row) average of the reception rate for
two competing flows: (a) the source backs off for
locally recovered packets; (b) it does not.

Enabling mid-path nodes to retransmit packets on
behalf of sources may cause a violation of sending rate
compliance imposed by the destination of a transfer.
For the sake of fairness and congestion control, the
source node must incorporate in-network retransmis-
sions in its sending rate calculations. To this end, JTP
forces sources to back off in accordance to the extra
traffic that is induced by in-network retransmissions.
When an ACK packet is received, the source uses the
locally-recovered packets field to adjust its sending rate.
Let r(t) be the rate indicated to the source by a received
ACK at time t. Let N be the number of packets locally
recovered within the network, and let sj , j ∈ [1, N ]
be the sizes of these packets. The source computes an
appropriate back-off period tb as follows:

tb =

∑N
j=1 sj

r(t)

Figure 5 shows the short- (top plots) and long- (bot-
tom plots) term average of the packet reception rate
(throughput) at the destination for two competing flows.
(See Section 6 for simulation details.) Flow 1 does
not request packet retransmissions (i.e. UDP-like flow),
while flow 2 requires that all its packets be delivered
and thus invoking the local recovery mechanism of the
in-network caches. We observe in the right plots, spikes
in the reception rate of flow 2 when it does not back off
its sending rate to account for its additional in-network
retransmissions—the unfairness introduced is more ev-
ident from the long-term average plots.

5. DESTINATION BASED CONTROL

5.1 Path Monitoring using Flip-flop Filtering

One design concept of JTP is to adaptively minimize
the frequency at which the destination node informs the
source of new transmission parameters, such as a new
sending rate. To this end, the end-to-end component of
JTP, eJTP, collects sample measurements of the state
of the connection’s path, such as the minimum available
rate over the links of the path. Let xi denote the ith

sample of a path’s metric, x̄ the estimated average, and
R̄ the estimated deviation from the average. We use
principles from statistical quality control [23] to detect
a significant change in the path’s state, which then trig-
gers the destination to send additional feedback signal,
in addition to feedback sent regularly at a low frequency.
To that end, we estimate the EWMA’s x̄ and range

R̄ as follows:

x̄ = (1− α)x̄ + αxi, initially x̄ = x0 (7)

R̄ = (1− β)R̄ + β | xi − xi−1 | , initially R̄ =
x0

2

R̄ is used to estimate the deviation around x̄ and is
calculated only from samples xi within the following
upper and lower control limits:

UCL = x̄+ 3
R̄

1.128
; LCL = x̄ − 3 R̄

1.128
(8)

Under normal operation, stable EWMA filters are
employed, i.e. the weights α and β are small so short-
term variations are filtered out. As long as xi lies within
the control limits, the state of the connection’s path is
considered stable and feedback is only reported to the
source at low frequency, say every T seconds. 10 Oth-
erwise, xi is considered an outlier. A certain number of
consecutive outliers is used as indication of significant
and persistent change in the state of the path, which
would then trigger an immediate feedback to the source
node. At this point, eJTP at the destination switches
to an agile EWMA filter where a larger α value is used,
so that x̄ catches up with the actual value. Once xi

falls back again within the control limits, eJTP at the
destination switches back to the stable filter for this
connection. This usage of both stable and agile filters
is known as a Flip-flop Filter [6].
In our implementation, we set T as a function of the

sending rate and of the cache size used in the network.
Specifically,

T = max(TLower Bound, n × 1
SendingRate ); n ≥ 1.

Notice that this ensures that the destination does
not send feedback/SNACK messages at a rate higher
than the sending rate. The value of TLower Bound is de-
pendent on the size of in-network caches, since if pack-
ets requested for retransmission by a feedback message
have already been evicted from the cache then the en-
ergy savings achieved by infrequent feedback messages

10The value of T is used to set the sender’s timeout field in
the JTP ACK header shown in Figure 2(b).
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would be offset by the energy consumed by packets that
have to be retransmitted from the source. If C is the
cache size—a configurable parameter of the network—
and RT T is the round-trip time for the connection then

TLower Bound ≤ C × SendingRate − RT T

Figure 6: The effect of cache size for various
network sizes.
Figure 6 shows the effect of cache size on the per-

formance of JTP for different network sizes and feed-
back rates. In this experiment one JTP flow is started
over linear networks. (See Section 6 for experimental
details.) The figure depicts the number of source re-
transmissions for increasing cache sizes. We observe
the sudden drop in the number of source retransmis-
sions once the cache size is large enough to hold missing
packets until they are requested for retransmission from
the caches. Increasing the cache size further does not
improve the performance significantly.
Figure 7 depicts the energy gains achieved by using

variable-rate feedback instead of a constant rate. In
this experiment, a linear topology of 8 nodes is used,
with one long-lived flow competing with several short-
lived flows. (See Section 6 for simulation details.) We
vary the rate of constant-rate feedback—as expected, as
the feedback rate increases, the total energy consumed
(Figure 7(a)) increases since more feedback/ACK pack-
ets are generated; and for low feedback rates, we observe
a high number of packet drops in the queues of inter-
mediate nodes (Figure 7(b)) because the sender of the
long-lived flow does not back off fast enough causing
congestion in the system. Using variable-rate feedback,
JTP not only achieves low energy consumption, but also
minimizes packet drops in the system since whenever
the system load increases, it sends a timely feedback
forcing the sender to back off.
5.2 Congestion Avoidance Mechanism
When the flip-flop path monitor triggers a new feed-

back message, the path controller at the destination
should set the transmission parameters (sending rate,
energy budget), to be used by the source for the subse-
quent packets until a new feedback is received.

5.2.1 PI2/MD Sending Rate Controller

This controller at the destination sets the sending
rate using the minimum available rate collected along
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Figure 7: The gains achieved by using variable
feedback rate.

the path of the JTP connection. Let Ā denote the av-
erage available path rate measured at the eJTP des-
tination, and δ ≥ 0 indicate the target available path
rate. If Ā > δ then the source increases its sending rate
r in proportion to the current available capacity and,
to improve fairness among competing flows, inversely
proportional to the current sending rate:

r(t+ 1) = r(t) +KI
Ā(t)
r(t)

, 0 < KI < 1 (9)

On the other hand, if there is little available rate (Ā
< δ), then the source decreases its sending rate multi-
plicatively:

r(t+ 1) = KD r(t), 0 < KD < 1 (10)

We note that the eJTP destination also limits the
sending rate by its delivery rate up the stack to the
receiving-side of the application.

5.2.2 Stability Analysis of PI2/MD Rate Controller

In order to analyze the stability of the controller, con-
sider a single JTP flow adapting its sending rate over a
fixed-capacity channel. For analytical tractability, let’s
ignore the EWMA computation of the available rate,
that is, if r(t) < C, then the JTP source adapts its rate
as follows:

r(t+ 1) = r(t) +KI × (C − r(t))
r(t)

(11)

On the other hand, if r(t) > C, then the JTP source
adapts its rate as follows:

r(t + 1) = KD × r(t) (12)

Observe that the system remains non-linear, with two
operating regions determined by whether the sending
rate r(t) is less than or greater than the capacity C.
We next consider each of these two regions, and prove
stability by showing that the value of a positive Lya-
punov function V (r) decreases with each iteration.
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• r(t) < C Region: Define V (r) = C − r. Then:

V (r(t + 1))− V (r(t)) = (C − r(t + 1))− (C − r(t)) =

C − (r(t) +KI × C − r(t)
r(t)

)− (C − r(t))

= −KI × ( C

r(t)
− 1) < 0

Thus, the only condition for V (r) to decrease is that
KI > 0, regardless of the exact value of KI . Of course,
the exact value of KI determines the tradeoff between
speed of convergence and quality of the steady-state
behavior—a higher value of KI leads to faster conver-
gence but higher oscillations.
• r(t) > C Region: Define V (r) = r − C. Then:

V (r(t + 1))− V (r(t)) = (r(t + 1)− C)− (r(t) − C) =
KD × r(t) − C − r(t) + C = −r(t)× (1− KD) < 0

Observe that, for V (r) to decrease, it is required that
KD < 1.

Thus, KI > 0 and KD < 1 are sufficient conditions
for convergence. Furthermore, at steady-state as t →
∞, substituting r(t + 1) = r(t) in Equation (11), we
have r(t)→ C, hence the rate control is efficient.
Observe that in the case of lower frequency of sending-

rate update, the above analysis still applies, i.e. the
system converges albeit at a slower pace.

5.2.3 PI2/MD Fairness under Dynamic Conditions
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Figure 8: Rate adaptation for two competing
JTP flows.

Figure 8 demonstrates the behavior of the flip-flop
path monitor of a long-lived flow 1 when competing with
a short-lived flow 2 which starts and ends at times 1000
and 1250, respectively. We observe (in the zoomed-in
bottom plots) how the average value of available rate
catches up with the instantaneous reported values as

the monitor switches to the agile EWMA filter, so that
the JTP source of flow 1 quickly backs off or increases
its rate accordingly. The top plots show the fair con-
vergence of flow rates when flow 2 is present.

5.2.4 Energy Budget Controller

Let eUCL(t) be the current upper control limit of the
flip-flop path monitor for the energy consumption of in-
dividual packets. The energy budget e that is reported
back to the source is computed as follows:

e(t+ 1) = β eUCL(t), β > 1 (13)

where β is a parameter defined by the application mod-
ule that denotes the importance of each packet, since
the energy budget controls the extra effort the network
should invest in the delivery of each packet under tran-
sient surges in energy consumption, or in the case of
route failures. β should be greater than one so that the
path monitor is able to detect outliers.

6. PERFORMANCE EVALUATION
Earlier in the paper, we have shown simulation re-

sults that demonstrate the operation and performance
of the various mechanisms in JTP. In this section, we
present additional results from the evaluation and test-
ing of JTP.
JTP is written as “shared code” so it can run on any

operating-system/hardware platform. To date, adap-
tation layers have been written to interface the shared
code of JTP with either the OPNET simulation envi-
ronment [1] or the Linux OS over JAVeLEN radios [11,
26]. We start by showing OPNET simulation results,
then Linux testbed results.
6.1 Simulation Results
In order to thoroughly evaluate the performance of

JTP, two types of topology are considered. Initially,
JTP was tested on static linear topologies in order to
study the effect of path length between sender and re-
ceiver on performance. We also evaluated JTP on ran-
dom topologies, with and without mobility of nodes, to
show its performance in realistic scenarios.
In order to provide a comprehensive and fair compari-

son against existing transport approaches for multi-hop
wireless networks [9,21,34,41], JTP is compared against
two representative protocols.
• TCP-SACK: TCP-SACK is chosen as a representa-
tive for all window-based approaches and as the most
commonly implemented protocol in working systems.
In order to have a more competitive performance, we
use a rate-based flavor of TCP-SACK, whereby the rate
of each flow is set by the well-known throughput equa-
tion of TCP [24]. Thus we remove artifacts from the
window-induced burstiness of data and ACK streams,
similar to what TCP pacing [2] does. Moreover, we
used delayed ACKs (one ACK every two packets) in an
attempt to reduce the rate of the ACK stream. The
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Table 1: Parameters’ default value
Parameter Value Parameter Value

MAX ATTEMPTS 5 JTP Pkt Size 800 bytes
Cache Size 1000 pkts TLower bound 10s

SACK version helps TCP selectively retransmit lost
packets only.
• ATP-like: In order to compare against the class of
explicit rate-based transport protocols, we implemented
a protocol which adjusts the sending rate based on ex-
plicit feedback collected by intermediate nodes, sup-
ports only end-to-end recovery, and has constant-rate
feedback from the receiver. The feedback period is set
to be larger than RTT as suggested for ATP [34]. ATP
adjusts its sending rate based on explicit rate feedback
from the path and thus takes into account real conges-
tion capturing the behavior of TCP CLAMP [3].
Given that TCP-SACK and ATP only support 100%-

reliability transfers, we will consider only bulk transfers
with 0% loss tolerance. Unless otherwise stated, the
configuration parameters used throughout the experi-
ments are listed in Table 1. In this prototype implemen-
tation the JTP header is 28 bytes and the JTP ACK
header is 200 bytes. 11

In this paper, we show two different performance met-
rics to compare the efficiency of each protocol.
• Energy per delivered bit: This measure captures the
system-wide energy consumed to deliver each data bit
to applications. Since our goal is to evaluate the en-
ergy consumption of transport protocols, we are only
concerned with the energy actually spent to transfer
packets of the transport layer, and thus we will not
consider the energy consumed for network maintenance
by the lower layers. To this end, a monitor is placed
in the link layer that computes the energy spent for
the transmission of each transport-layer packet based
on the transmission power, the radio’s datarate and the
packet’s length.
• Goodput: This measure captures the total rate at
which the network delivers new data to the applications,
and thus represents how efficient the network resources
are utilized.

6.1.1 Static Linear Topologies
In these experiments the source and the destination

of two competing flows are placed at the two ends of
the network. To capture the varying quality of wireless
links, the value of the average pathloss of each link alter-
nates between a good state (low loss) and a bad state
(high loss). Each link is in bad state approximately
10% of the time. The average duration of the bad pe-
riod is 3 seconds. The results shown are the average of

11The JTP header, and especially the ACK header is not
optimized in this prototype implementation.
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Figure 9: Results for Linear Topologies.
twenty (independent) runs along with 95% confidence
intervals. Each simulation run lasted for 2500 seconds,
and flows were started randomly after a warm-up period
of 900 seconds.
Figure 9(a) shows the energy per delivered bit for

each protocol for varying network sizes. JTP signifi-
cantly outperforms all the other protocols. As the path
length increases, ATP ends up expending twice as much
energy as JTP to deliver one bit, while TCP-SACK ex-
pends almost five times more energy for the delivery of
each bit.
Figure 9(b) demonstrates that JTP not only provides

great energy savings, but also achieves higher goodput.
Without sacrificing system’s performance, JTP mini-
mizes the amount of feedback control messages, which
in a wireless network environment, effectively “steal”
bandwidth from users’ data.

6.1.2 Random Topologies
We begin by testing JTP over static random topolo-

gies. Nodes are randomly distributed in a two-dimensional
field. In order to avoid getting disconnected topolo-
gies, the field size is set to ensure that the network is
connected with high probability. The source and des-
tination nodes of 5 simultaneous flows are chosen ran-
domly. The presented results are the average of 10 in-
dependent runs, of 4000s each both for the static and
the mobile scenarios. Given that the placement of the
nodes and flows are chosen at random, the system-wide
performance might vary significantly. In order to mean-
ingfully compare across different protocols, we ensured
that all the protocols run under the same conditions in
the same run.
Figures 10(a) and (b) show the energy per delivered

bit and the goodput achieved by various protocols for
varying network size. JTP outperforms both ATP and
TCP in both metrics.
In the next set of experiments, we tested JTP’s per-

formance in a mobile setting for a 15-node network.
Each node moves within the field at various speeds (low:
0.1m/s, moderate: 1m/s, fast: 5m/s). We used the
random way point mobility model in which each node
chooses a random direction and moves in that direction
for an average distance of 47m. There is an average
pause of 100s between movements for each node.
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Table 2: JAVeLEN system results
Energy per delivered bit Average goodput

(mJ/bit) (kbps)
JTP 0.0054 0.63
ATP 0.0068 0.44
TCP 0.0105 0.17

Figures 11(a) and (b) show the energy per delivered
bit and the goodput achieved by the three protocols.
Figure 11(c) presents the relation between end-to-end
and locally recovered packets—the values presented are
normalized by the total data delivered to the applica-
tions. This graph shows that even in mobile environ-
ments, where the path between two nodes is constantly
changing, deploying local caches is beneficial—we ob-
serve in-network retransmissions which result in energy
gains and better distribution of retransmission effort
across nodes.

6.2 Linux Results
In order to verify our simulation results, we imple-

mented and tested JTP in a real JAVeLEN system. In
this system, the MAC is running in RTLinux, while the
non real-time part of the system, like the applications,
are running on top of Linux. In these experiments, we
used 14 such systems and we ran JTP, TCP-SACK and
ATP. Each experiment lasted for 30 minutes. During
these 30 minutes, flows were generated in each node
with an average interarrival time of 400sec and aver-
age transfer size of 100KB. A summary of the results
is shown in Table 2. Given that in the real system
the pathloss of the links is not controlled but it is only
determined by the in-door multipath fading, the links
are more stable and their quality is much better, which
results in lower energy consumption for all protocols.
Nevertheless, JTP still outperforms both ATP and TCP
in both metrics. Notice that the goodput achieved by
TCP is higher than that achieved in simulation due to
the low packet loss rate.

7. RELATED WORK
Extensive studies [14] have demonstrated the inade-

quacy of TCP to serve as a transport protocol in wire-
less environments. Enhancements have mainly focused
on alleviating the effects of assuming that packet losses

are only due to congestion.
Proxy-based approaches: Focus on hiding wireless
losses from the TCP sender [4,5] by retransmitting from
caches at the wireline-wireless boundary. Ludwig has
shown that, if not designed carefully, end-to-end and in-
network retransmissions, used together, can cause worse
performance than either alone [22]. Energy conserva-
tion in multi-hop wireless networks led us to extend
this concept to retransmissions from caches anywhere
along the wireless path. As we showed in this paper,
JTP gives the ends of the connection explicit control
over the amount of local retransmission effort. In addi-
tion, redundant source retransmissions are avoided by
explicitly informing the sender of local (cache) retrans-
missions done on its behalf.
End-to-end approaches: Attempt to identify the type
of loss either explicitly such as ATCP [21], or implic-
itly such as WTCP [32]. Even perfect knowledge of
the reason of packet loss (e.g. congestion-induced vs.
transmission error) at the sender, often, does not im-
prove throughput performance [6, 19]. Moreover, these
schemes suffer from the slow adaptation of TCP’s AIMD
mechanism [16] to the fast changing conditions of wire-
less links. TCP-Westwood [8] addresses this problem
by augmenting AIMD with an estimate of the available
bandwidth measured based on the ACK reception rate.
Other approaches tried to alleviate the effects of bursty
TCP traffic by clamping the congestion window [3] or
by pacing TCP packets [2]. Although these approaches
significantly improve TCP performance they still rely
on packet loss to identify congestion. Our JTP proto-
col is rate-based and avoids congestion altogether.
Receiver-based control: The sender centric approach
of TCP requires frequent feedback which may cause
congestion and force the sender to back off. A receiver
centric flavor of TCP, such as RCP [15], has been pro-
posed, however the rate of the backward ACK stream is
not reduced. Our JTP protocol is also receiver-based,
but the feedback rate is dynamically adjusted based on
the stability and reliability conditions of the forward
path.
Rate-based flow control: To ameliorate the ACK
compression problem, rate-based protocols [10] have been
proposed, whereby the available rate could be explicitly
collected and fed back to the sender [34]. These so-
lutions still use frequent constant-rate feedback which
competes with data flows for resources. Our JTP pro-
tocol attempts to reduce the feedback rate constrained
by the conditions and cache sizes on the forward path.
Application-specific protocols: Transport protocols
cognizant of a certain application’s QoS requirements
have been devised, such as RTP [13] and ITP [25]. Our
JTP protocol further generalizes such proposals by en-
abling any application to not only influence the flow and
error control mechanisms but also in-network decisions
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Figure 11: Results for Random Topologies with Mobility.

regarding the handling of its packets.
Energy-conscious scheduling and routing: In all
aforementioned research, energy consumption has not
been examined. Approaches have been proposed to
monitor and even shape application’s data to turn on
and off the network interface on end-nodes for the pur-
pose of energy savings, while still satisfying the applica-
tion’s requirements [18]. These monitoring techniques
are hard to apply in multi-hop wireless networks, where
each node is both, a router and an end-node.
In the context of proxy-based schemes, the tradeoff

between throughput performance and energy costs (due
to transmission power and error control) was analyzed
in [7]. For multi-hop wireless networks, several power-
aware MAC scheduling and routing protocols have been
proposed [27,31,35,39]. JAVeLEN [11,26] builds on this
body of prior work. We demonstrated in this paper,
that even if network nodes are parsimonious in their
use of energy (e.g. nodes turned off when there is no
data to transmit or receive), an energy-aware transport
protocol, such as JTP, can achieve greater energy gains
by turning on the radios only when it is absolutely
necessary. To this end, JTP minimizes control traffic
and avoids data transmissions that are unnecessary for
meeting given delivery requirements of applications.
Sensor protocols: Energy-aware transport protocols
have been proposed in the realm of sensor networks,
such as PSFQ [38]. Given the goal of one-to-many reli-
able delivery in such sensor network realm (e.g. to pro-
gram the sensors), issues that arise in multi-hop wire-
less networks regarding the fair allocation of resources
among flows and the reduction of in-network overhead
have not been considered.
Other wireline protocols: Other protocols, proposed
for wireline networks, such as SCTP [12] and XCP [17],
suffer from inefficiencies similar to TCP when employed
in multi-hop wireless environments.

8. CONCLUSIONS AND FUTURE WORK
We presented JTP, an energy-conscious transport pro-

tocol, that is rate-based receiver-oriented with variable
feedback, coordinated in-network error recovery, and
application-aware per packet handling. Our results show
that JTP outperforms traditional transport protocols
(TCP and UDP) and a representative multi-hop wire-

less transport protocol (ATP) in every respect. For all
network sizes and mobility settings evaluated, JTP con-
sistently provided higher goodput and consumed less
energy per node and over the entire network.
Our research also contributes in the form of lessons

learned. For example, we have demonstrated the need
to have multi-level error recovery, via the MAC and
caching, that is explicitly controlled by the ends of con-
nections. This shows that problems in energy-awareness
can yield non-intuitive solutions.
JTP provides a fresh perspective that offers many

opportunities for future work. We are currently in-
vestigating energy-awareness in cache/memorymanage-
ment, and the support of other applications such as data
collection and image transfers.
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